Self-assembly nanomicelles based on cationic mPEG-PLA-b-Polyarginine(R15) triblock copolymer for siRNA delivery.
نویسندگان
چکیده
Due to the absence of safe and effective carriers for in vivo delivery, the applications of small interference RNA (siRNA) in clinic for therapeutic purposes have been limited. In this study, a biodegradable amphiphilic tri-block copolymer (mPEG(2000)-PLA(3000)-b-R(15)) composed of monomethoxy poly(ethylene glycol), poly(d,l-lactide) and polyarginine was synthesized and further self-assembled to cationic polymeric nanomicelles for in vivo siRNA delivery, with an average diameter of 54.30 ± 3.48 nm and a zeta potential of approximately 34.8 ± 1.77 mV. The chemical structures of the copolymers were well characterized by (1)H NMR spectroscopy and FT-IR spectra. In vitro cytotoxicity and hemolysis assays demonstrated that the polymeric nanomicelles showed greater cell viability and haemocompatibility than those of polyethyleneimine (PEI) or R(15) peptide. In vitro experiments demonstrated that EGFR targeted siRNA formulated in micelleplexes exhibited approximately 65% inhibition of EGFR expression on MCF-7 cells in a sequence-specific manner, which was comparable to Lipofectamine™ 2000. The results of intravenous administration showed Micelleplex/EGFR-siRNA significantly inhibited tumor growth in nude mice xenografted MCF-7 tumors, with a remarkable inhibition of EGFR expression. Furthermore, no positive activation of the innate immune responses and no significant body weight loss was observed during treatment suggested that this polymeric micelle delivery system is non-toxic. In conclusion, the present nanomicelles based on cationic mPEG(2000)-PLA(3000)-b-R(15) copolymer would be a safe and efficient nanocarrier for in vivo delivery of therapeutic siRNA.
منابع مشابه
Cationic Mucic Acid Polymer-Based siRNA Delivery Systems.
Nanoparticle (NP) delivery systems for small interfering RNA (siRNA) that have good systemic circulation and high nucleic acid content are highly desired for translation into clinical use. Here, a family of cationic mucic acid-containing polymers is synthesized and shown to assemble with siRNA to form NPs. A cationic mucic acid polymer (cMAP) containing alternating mucic acid and charged monome...
متن کاملControlled drug release system based on cyclodextrin-conjugated poly(lactic acid)-b-poly(ethylene glycol) micelles.
Cyclodextrin-conjugated poly(lactic acid)-b-poly(ethylene glycol) (β-CD-PLA-mPEG), a well-defined amphiphilic copolymer, was synthesized by controlled ring-open copolymerization and click coupling reaction, in order to obtain a biocompatible drug delivery system with controlled release profiles. The β-CD-PLA-mPEG copolymer could self-assemble in aqueous solution to form micelles with a mean par...
متن کاملBiodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing
Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) tri...
متن کاملEffect of different mass ratio of PLA: PEG segments in PLA-PEG-PLA copolymers on the physicochemical characterization and DNA release profile
Background: Adapting controlled release technologies to the delivery of DNA has the great potential to overcome extracellular barriers that limit gene delivery. This study investigates the effect of different mass ratio of PLA: PEG in the various tri block poly (lactic acid)-poly (ethylene glycol) - Poly (lactic acid) copolymer (PLA-PEG-PLA) on the properties of the resulting nanoparticles. Me...
متن کاملMulti-responsive and tough hydrogels based on triblock copolymer micelles as multi-functional macro-crosslinkers.
Multi-stimuli responsive hydrogels are synthesized using self-assembled nanomicelles of Pluronic F127 diacrylate triblock copolymer as non-covalent macro-crosslinkers to in situ copolymerize with acrylamide and methyl chloride quaternized N,N-dimethylamino ethylacrylate monomers, generating positively charged hydrogels. These hydrogels showed high strength, toughness, and outstanding fatigue re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 33 28 شماره
صفحات -
تاریخ انتشار 2012